HDU 5763 Another Meaning(FFT)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5763
【题目大意】
给出两个串S和T,可以将S串中出现的T替换为*,问S串有几种表达方式。
【题解】
我们定义数组f为S串中T出现的最后一个字母所在的位置,那么ans[i]=ans[i-1]+f[i-1]?ans[i-lenT]:0,一遍递推即可,所以关键就在于求出f数组了,f数组可以用kmp求,由于最近练FFT,用FFT求距离卷积匹配为0的位置,就是f数组了。
【代码】
#include <cstdio> #include <cmath> #include <algorithm> #include <cstring> using namespace std; typedef long long LL; const int N=524300; int n,pos[N]; namespace FFT{ struct comp{ double r,i; comp(double _r=0,double _i=0):r(_r),i(_i){} comp operator +(const comp&x){return comp(r+x.r,i+x.i);} comp operator -(const comp&x){return comp(r-x.r,i-x.i);} comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);} comp conj(){return comp(r,-i);} }A[N],B[N]; const double pi=acos(-1.0); void FFT(comp a[],int n,int t){ for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]); for(int d=0;(1<<d)<n;d++){ int m=1<<d,m2=m<<1; double o=pi*2/m2*t; comp _w(cos(o),sin(o)); for(int i=0;i<n;i+=m2){ comp w(1,0); for(int j=0;j<m;j++){ comp& A=a[i+j+m],&B=a[i+j],t=w*A; A=B-t;B=B+t;w=w*_w; } } }if(t==-1)for(int i=0;i<n;i++)a[i].r/=n; } } const int mod=1e9+7; int T,Cas=1,l1,l2,ans[N],cnt=0,a[N],b[N],f[N]; FFT::comp A[N],B[N],C[N]; char s1[N],s2[N]; int main(){ scanf("%d",&T); while(T--){ scanf(" %s %s",&s1,&s2); memset(f,0,sizeof(f)); memset(ans,0,sizeof(ans)); memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); l1=strlen(s1); l2=strlen(s2); for(int i=0;i<l1;i++)a[i]=s1[i]-'a'+1; for(int i=0;i<l2;i++)b[l2-1-i]=s2[i]-'a'+1; int N=1; while(N<l1+l2)N<<=1; int j=__builtin_ctz(N)-1; for(int i=0;i<N;i++)C[i]=FFT::comp(0,0); for(int i=0;i<N;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);} for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i]*a[i],0),B[i]=FFT::comp(b[i],0); FFT::FFT(A,N,1);FFT::FFT(B,N,1); for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i]; for(int i=0;i<N;i++)A[i]=FFT::comp(a[i],0),B[i]=FFT::comp(b[i]*b[i]*b[i],0); FFT::FFT(A,N,1);FFT::FFT(B,N,1); for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i]; for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i],0),B[i]=FFT::comp(b[i]*b[i],0); FFT::FFT(A,N,1);FFT::FFT(B,N,1); for(int i=0;i<N;i++)C[i]=C[i]-A[i]*B[i]*FFT::comp(2,0); FFT::FFT(C,N,-1); for(int i=l2-1;i<l1;i++){ if(C[i].r<0.5)f[i]=1; }ans[0]=1; for(int i=1;i<=l1;i++){ ans[i]=ans[i-1]; if(f[i-1])ans[i]+=ans[i-l2]; if(ans[i]>mod)ans[i]-=mod; }printf("Case #%d: %d\n",Cas++,ans[l1]); }return 0; }